Telegram Group & Telegram Channel
Напишите логистическую регрессию

import numpy as np

class LogisticRegression:

def __init__(self, learning_rate=0.01, n_iters=1000):
self.learning_rate = learning_rate
self.n_iters = n_iters
self.weights = None
self.bias = None

def fit(self, X, y):
# initialize weights and bias to zeros
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0

# gradient descent optimization
for i in range(self.n_iters):
# calculate predicted probabilities and cost
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
cost = (-1 / n_samples) * np.sum(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))

# calculate gradients
dw = (1 / n_samples) * np.dot(X.T, (y_pred - y))
db = (1 / n_samples) * np.sum(y_pred - y)

# update weights and bias
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db

def predict(self, X):
# calculate predicted probabilities
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
# convert probabilities to binary predictions
return np.round(y_pred).astype(int)

def _sigmoid(self, z):
return 1 / (1 + np.exp(-z))


#python
#машинное_обучение
👍101



tg-me.com/ds_interview_lib/611
Create:
Last Update:

Напишите логистическую регрессию

import numpy as np

class LogisticRegression:

def __init__(self, learning_rate=0.01, n_iters=1000):
self.learning_rate = learning_rate
self.n_iters = n_iters
self.weights = None
self.bias = None

def fit(self, X, y):
# initialize weights and bias to zeros
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0

# gradient descent optimization
for i in range(self.n_iters):
# calculate predicted probabilities and cost
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
cost = (-1 / n_samples) * np.sum(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))

# calculate gradients
dw = (1 / n_samples) * np.dot(X.T, (y_pred - y))
db = (1 / n_samples) * np.sum(y_pred - y)

# update weights and bias
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db

def predict(self, X):
# calculate predicted probabilities
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
# convert probabilities to binary predictions
return np.round(y_pred).astype(int)

def _sigmoid(self, z):
return 1 / (1 + np.exp(-z))


#python
#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/611

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA